## JP Journal of Applied Mathematics

Volume 13, Issues 1 & 2, 2016, Pages 1-9 © 2016 Ishaan Publishing House
This paper is available online at http://www.iphsci.com

# A NOTE ON THE VERTEX-DISTINGUISHING EDGE COLORING OF $P_m \vee K_n$ AND $C_m \vee K_n$

## CHUANCHENG ZHAO, SHUXIA YAO, JUN LIU and ZHIGUO REN

School of Information Science and Engineering Lanzhou City University Lanzhou 730070, P. R. China

#### **Abstract**

In this paper, we obtain the Vertex-distinguishing Edge Chromatic Number of  $P_m \vee K_n$  and  $C_m \vee K_n$ .

#### 1. Introduction

The problem which is due to computer science [1-6] about Vertex-distinguishing Edge Coloring of G is a widely applicable and extremely difficult problem. In [7] introduced the Vertex-distinguishing Edge Coloring of graph, and give the relevant conjecture.

**Definition 1** [8-10]. G is a simple graph and k is a positive integer, if it exists a mapping of f, and satisfied with  $f(e) \neq f(e')$  for adjacent edge  $e, e' \in E(G)$ , then f is called a *Proper Edge Coloring* of G, is abbreviated k-PEC of G, and

2010 Mathematics Subject Classification: 05C15.

Keywords and phrases: path, cycle, complete graph, join-graph, vertex-distinguishing edge chromatic number.

This study is supported by Lanzhou City University Ph. D. Research Fund (LZCU-BS2013-09 and LZCU-BS2013-12).

Received June 3, 2016

$$\chi'(G) = \min\{k \mid k \text{-PEC}\}\$$

is called the *Edge Chromatic Number* of *G*.

**Definition 2** [1-6]. For the proper edge coloring f of simple graph, if it is satisfied with  $C(u) \neq C(v)$  for  $V(G)(u \neq v)$ , where  $C(U) = \{f(uv) | uv \in E(G)\}$ , then f is called the *Vertex-distinguishing Edge Coloring*, is abbreviated k-VDEC of G, and

$$\chi'_{vd} = \min\{k \mid k \text{-VDEC}\}\$$

is called the Vertex-distinguishing Edge Chromatic Number of G.

**Definition 3.** For a graph G, let  $n_i$  be the vertex number of the vertices of degree i, we call

$$\mu(G) = \max \left\{ \min \left\{ \lambda | \binom{\lambda}{i} \ge n_i, \ \delta \le i \le \Delta \right\} \right\}$$

the *Combinatorial Degree* of G, where  $\delta$  and  $\Delta$  are the minimal and maximal degree of G, respectively.

**Conjecture** [1-5]. For a connected graph G of order not less than 3, then

$$\mu(G) \le \chi'_{vd}$$

$$\le \mu(G) + 1.$$

Note that the left side of the inequality is obviously true.

Let G and H are two simple graphs, the joint graph of G and H, denote by  $G \vee H$ , is obtained from the disjoint union of G and H by making all of V(G) adjacent to all of V(H).

Because  $P_1 \vee K_n = K_{n+1}$  and  $P_2 \vee K_n = K_{n+2}$  has been discussed in another paper, we will consider the general case  $P_m \vee K_n$  and  $C_m \vee K_n$ . The terms and signs we use in this paper but not denoted can be found in [8-10].

**Lemma 1.** Let  $m \ge 3$  and  $n \ge 4$ ,  $\mu(P_m \lor K_n) = m + n$ .

**Proof.** For m = 3 and n = 3, we can compute that

$$\max \left\{ \min \left\{ \theta \, | \begin{pmatrix} \theta \\ 6 \end{pmatrix} \geq 2 \right\} \text{ and } \min \left\{ \theta \, | \begin{pmatrix} \theta \\ 7 \end{pmatrix} \geq 6 \right\} \right\} = 8.$$

For  $n \ge 4$  and  $m + n \ne 8$ , we get that

$$\max\left\{\min\left\{\theta | \begin{pmatrix} \theta \\ n+1 \end{pmatrix} \ge 2\right\}, \min\left\{\theta | \begin{pmatrix} \theta \\ n+2 \end{pmatrix} \ge m-2\right\} \text{ and } \min\left\{\theta | \begin{pmatrix} \theta \\ m+n-1 \end{pmatrix} \ge n\right\}\right\}$$

= m + n.

Hence, the proof is finished.

**Lemma 2** [5]. For a complete graph  $K_n$ , then

$$\chi'_{vd}(K_n) = \begin{cases} n+1, & \text{for } n \equiv 0 \pmod{2}; \\ n, & \text{for } n \equiv 1 \pmod{2}. \end{cases}$$

**Lemma 3.** If  $m \ge 3$  and  $n \ge 4$ , then

$$\mu(C_m \vee K_n) = m + n.$$

**Proof.** We have that

$$\mu(C_m \vee K_n)$$

$$= \max \left\{ \min \left\{ \theta | \begin{pmatrix} \theta \\ n+2 \end{pmatrix} \ge m \right\} \text{ and } \min \left\{ \theta | \begin{pmatrix} \theta \\ m+n-1 \end{pmatrix} \ge n \right\} \right\}$$

$$= m + n.$$

# **2. Results about** $P_m \vee K_n$

**Theorem 2.1.** If  $m + n \neq 3$ , then

$$\chi'_{vd}(P_m \vee K_n) = \begin{cases} n+1, & m=1, n=0 (\text{mod } 2); \\ n+2, & m=1, n=1 (\text{mod } 2); \\ n+3, & m=1, n=0 (\text{mod } 2). \end{cases}$$

**Proof.** When m = 1, 2, we can get  $P_m \vee K_n = K_{m+n}$  from [5], the conclusion is true.

**Theorem 2.2.** If  $m \ge 3$  and  $n \ge 4$ , then

$$\chi'_{vd}(P_m \vee K_n) = m + n.$$

### 4 CHUANCHENG ZHAO, SHUXIA YAO, JUN LIU and ZHIGUO REN

**Proof.** Let the path  $P_m = u_1 u_2 \cdots u_m$  and  $V(K) = \{u_{m+1}, u_{m+2}, \dots, u_{m+n}\}$  and  $C = \{1, 2, \dots, m+n-1, 0\}$ . From Lemma 2, we only need to prove that there exists a (m+n)-VDEC of  $P_m \vee K_n$ . Hence, we can make a proper edge coloring f of  $P_m \vee K_n$  as:

$$f(u_iu_j) = i + j - 1 \pmod{m+n}$$
 for  $1 \le i \le n$  and  $m+1 \le j \le m+n$ ,

and

$$f(u_{m+i}u_{m+j}) = 2m + i + j - 2 \pmod{m+n}$$
 for  $i \le i, j \le n$ .

Let the color subtractive set  $\overline{C}(u) = C \setminus C(u)$  for  $u \in V(P_m \vee K_n)$ .

Case 1. If  $m > n \ge 4$ ,  $f(u_i u_{i+1}) = i$  for  $1 \le i \le n$ ; we can compute that

$$\overline{C}(v_i) = \{2(i-1)\}, \text{ for } 1 \le i \le n;$$

$$C(u_1) = \{1, n, n+1, \dots, 2n-1\};$$

$$C(u_m) = \{m-1, m+n-1, 0, ..., n-2\};$$

$$C(u_i) = \{i-1, i, n+i-1, n+i, \dots, 2n+i-2\} \pmod{m+n}, \text{ for } 2 \le i \le m-1.$$

Thus f is a (m+n)-VDEC of  $P_m \vee K_n$ . This proves that the result is true.

Case 2. If m = n,  $f(u_i u_{i+1}) = i$  for  $1 \le i \le n-1$ , there are

$$\overline{C}(v_i) = \{2(i-1)\}, \text{ for } 1 \le i \le n;$$

$$C(u_1) = \{1, n, n+1, ..., 2n-1\};$$

$$C(u_m) = \{n-1, 2n-1, 0, ..., n-2\};$$

$$C(u_i) = \{i-1, i, n+i-1, n+i, \dots, 2n+i-2\} \pmod{2n}, \text{ for } 2 \le i \le n-1.$$

Hence, f is (m + n)-VDEC of  $P_m \vee K_n$ .

Case 3. If n > m, there are

$$f(u_i u_{i+1}) = n - m + i$$
, for  $1 \le i \le m - 1$ ,

we get that

$$\overline{C}(v_i) = \{2(i-1)\}, \text{ for } 1 \le i \le \frac{m+n}{2};$$

$$\overline{C}(v_i) = \{2i - m - n + 1\}, \quad \text{for } \frac{m+n}{2} \le i \le n.$$

For  $m + n \equiv 1 \pmod{2}$ , there have

$$\overline{C}(v_i) = \{2(i-1)\}, \text{ for } 1 \le i \le \frac{m+n+1}{2};$$

$$\overline{C}(v_i) = \{2i - m - n + 1\}, \text{ for } \frac{m+n+1}{2} + 1 \le i \le n,$$

$$C(u_1) = \{n - m + 1, n, n + 1, ..., 2n - 1\} \pmod{m + n};$$

$$C(u_m) = \{n-1, m+n-1, 0, 1, \dots, n-2\};$$

$$C(u_i) = \{n - m + i, n - m + i + 1, n + i - 1, ..., 2n + i - 2\} \pmod{m + n},$$

for  $1 \le i \le m-1$ .

Therefore, f is a (m+n)-VDEC of  $P_m \vee K_n$ . The proof is finished.

# **3. Results about** $C_m \vee K_n$

**Theorem 3.1.** *If* n > 1, *then* 

$$\chi'_{vd}(C_3 \vee K_n) = \begin{cases} n+4, & n=1 \pmod{2}; \\ n+3, & n=0 \pmod{2}. \end{cases}$$

**Proof.** Because of  $C_3 \vee K_n = K_{n+3}$ , the result is true we know by [5].

**Theorem 3.2.** If  $m \ge 4$  and  $n \ge 4$ , then

$$\chi'_{vd}(C_m \vee K_n) = m + n.$$

**Proof.** By Lemma 2, the inequality  $\chi'_{vd}(C_3 \vee K_n) \ge \mu(C_3 \vee K_n)$  is obvious, so

6

we only need to prove that  $C_3 \vee K_n$  has a mapping (m+n)-VDEC only. For convenient, we let that

$$\begin{split} &C_m = u_1 u_2 \cdots u_m u_1, \\ &V(K_n) = \{v_i \mid i = 1, 2, \dots, n\}; \\ &C = \{1, 2, \dots, m + n - 1, 0\}, \\ &\overline{C}(v) = C \backslash C(v), \\ &u_i = v_{n+i}, \quad i = 1, 2, \dots, m. \end{split}$$

Case 1. If m > n, we make a coloring function f as:

$$f(v_i v_j) = i + j - 2(\text{mod } m + n),$$

for i=1, 2, ..., n; j=i+1, i+2, ..., m+n and  $f(u_iu_{i+1})=i$ , i=1, 2, ..., m-1; and  $f(u_mu_1)=n-1$ .

Therefore, we can get that

$$\overline{C}(v_i) = \{2(i-1)\}, \text{ for } 1 \le i \le n;$$

$$C(u_1) = \{1, n-1, n, ..., 2n-1\};$$

$$C(u_m) = \{m-1, m+n-1, 0, 1, ..., n-1\};$$

$$C(u_i) = \{i-1, i, n+i-1, \dots, 2n+i-2\} \pmod{m+n}, \text{ for } 2 \le i \le m-1.$$

This proves that f is a (m+n)-VDEC of  $C_m \vee K_n$ .

Case 2. If m = n, we make f as:

$$f(v_i v_j) = i + j - 2 \pmod{2n}, \quad i = 1, 2, ..., n; \quad j = i + 1, i + 2, ..., 2n$$

and

$$f(u_iu_{i+1}) = i+1, \quad i = 1, 2, ..., n-1;$$

and  $f(u_n u_1) = n - 1$ .

Then, we still have that

$$\overline{C}(v_i) = \{2(i-1)\}, \quad i = 1, 2, ..., n;$$

$$C(u_1) = \{2, n-1, n, ..., 2n-1\};$$

$$C(u_m) = \{n-1, n, 2n-1, 0, 1, ..., n-2\};$$

$$C(u_i) = \{i, i+1, n+i-1, ..., 2n+i-2\} \pmod{2n}, \quad i = 2, 3, ..., n-1.$$

That means that f is a (2n)-VDES of  $C_m \vee K_n$ .

**Case 3.** If n > m, we let f as:

$$f(v_i v_j) = i + j - 2 \pmod{m+n}, \quad i = 1, 2, ..., n; \quad j = i+1, i+2, ..., m+n$$

and

$$f(u_iu_{i+1}) = n - m + i, \quad i = 1, 2, ..., m - 2;$$

and 
$$f(u_{m-1}u_m) = n$$
 and  $f(u_mu_1) = n - 1$ .

Then, if  $m + n \equiv 0 \pmod{2}$ , we can see that

$$\overline{C}(v_i) = \{2(i-1)\}, \quad i = 1, 2, ..., \frac{m+n}{2};$$

$$\overline{C}(v_i) = \{2i - (m+n) - 1\}, \quad i = \frac{m+n}{2} + 1, \frac{m+n}{2} + 2, \dots, n;$$

$$C(u_1) = \{n - m + 1, n - 1, n, ..., n - m - 1\};$$

$$C(u_{m-1}) = \{n-2, n, m+n-2, m+n-1, 0, 1, ..., n-3\};$$

$$C(u_m) = \{n-1, n, m+n-1, 0, ..., n-2\};$$

and

$$C(u_i)$$

$$= \{n-m+i, n-m+i+1, n+i-1, ..., n-m+i-2\} \pmod{n+m}, i=2,3,...,m-2.$$

If  $m + n \equiv 1 \pmod{2}$ , we can compute

$$\overline{C}(v_i) = \{2(i-1)\}, \quad i = 1, 2, ..., \frac{m+n+1}{2};$$

$$\overline{C}(v_i) = \{2i-m-n\}, \quad i = \frac{m+n+1}{2}+1, \frac{m+n+1}{2}+2, \, \dots, \, n;$$

$$C(u_1) = \{n-1, n-m+1, n, n+1, ..., n-m-1\};$$

$$C(u_{m-1}) = \{n-2, n, m+n-2, m+n-1, 0, 1, ..., n-3\};$$

$$C(u_m) = \{n-1, n, m+n-1, 0, ..., n-2\};$$

 $C(u_i)$ 

$$= \{n-m+i-1, n-m+i, n+i-1, ..., n-m+i-2\} \pmod{n+m}, i=2,3,...,m-2.$$

We have proved that f is a (m + n)-VDEC of  $C_m \vee K_n$ .

The proof is completed.

#### References

- [1] O. Favaron, H. Li and R. H. Schelp, Strong edge coloring of graphs, D. M. 159(1-3) (1996), 103-110.
- [2] A. C. Burris and R. H. Schelp, Vertex-distinguishing proper edge-colorings, J. Graph Theo. 26(2) (1997), 73-82.
- [3] C. Bazgan, A. Harkat-Benhamdine, H. Li, et al., On the vertex-distinguishing proper edge-coloring of graph, J. Combin. Theo., Ser. B, 75 (1999), 288-301.
- [4] P. N. Balister, B. Bollobás and R. H. Schelp, Vertex-distinguishing coloring of graphs with (G) = 2, Discr. Math. 252(2) (2002), 17-29.
- [5] P. N. Balister, O. M. Riordan and R. H. Schelp, Vertex-distinguishing edge colorings of graphs, J. Graph Theo. 42 (2003), 95-109.
- [6] J. Cerny, M. Hornak and R. Sotak, Observability of a graph, Math. Slovaca 46 (1996), 21-31.
- [7] Zhongfu Zhang, Linzhong Liu and Jianfang Wang, Adjacent strong edge coloring of graphs, Appl. Math. Lett. 15 (2002), 623-626.

# A NOTE ON THE VERTEX-DISTINGUISHING EDGE COLORING ...

- [8] J. A. Bondy and U. S. R. Marty, Graph Theory with Applications, The Macmillan Press, Ltd., New York, 1976.
- [9] G. Chartrand and L. F. Linda, Graphs and Diagraphs, Ind Edition Wadswirth Brokks/Cole, Monterey, CA, 1986.
- [10] P. Hansen and O. Marcotte, Graph Coloring and Application AMS Providence, Rhode Island USA, 1999.