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Abstract

In this paper, we obtain the Vertex-distinguishing Edge Chromatic Number of
P, v K, and Cy, v K,.

1. Introduction

The problem which is due to computer science [1-6] about Vertex-distinguishing
Edge Coloring of G is a widely applicable and extremely difficult problem. In [7]
introduced the Vertex-distinguishing Edge Coloring of graph, and give the relevant

conjecture.

Definition 1 [8-10]. G is a simple graph and k is a positive integer, if it exists a
mapping of f, and satisfied with f(e) # f(e’) for adjacent edge e, ¢’ € E(G), then
fis called a Proper Edge Coloring of G, is abbreviated k-PEC of G, and
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¥'(G) = min{k | k-PEC}

is called the Edge Chromatic Number of G.

Definition 2 [1-6]. For the proper edge coloring f of simple graph, if it is
satisfied with C(u) # C(v) for V(G)(u # v), where C(U) = {f(uv)luv € E(G)},

then f'is called the Vertex-distinguishing Edge Coloring, is abbreviated k-VDEC of
G, and

X.q = min{k|k-VDEC}
is called the Vertex-distinguishing Edge Chromatic Number of G.

Definition 3. For a graph G, let n; be the vertex number of the vertices of

wG) = max{min{?»l(?bj >2n,0<i< A}}

the Combinatorial Degree of G, where & and A are the minimal and maximal

degree i, we call

degree of G, respectively.
Conjecture [1-5]. For a connected graph G of order not less than 3, then
HG) < X
<WG) +1.
Note that the left side of the inequality is obviously true.

Let G and H are two simple graphs, the joint graph of G and H, denote by
G v H, is obtained from the disjoint union of G and H by making all of V(G)
adjacent to all of V(H).

Because B v K, =K, and P, v K,, = K., has been discussed in another
paper, we will consider the general case P, v K,, and C,, v K,. The terms and

signs we use in this paper but not denoted can be found in [8-10].

Lemma 1. Let m 23 and n 2 4, W(P,vK,)=m+n.

Proof. For m =3 and n = 3, we can compute that

o] s 3] -
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For n > 4 and m + n # 8, we get that

e e, )

=m+n.
Hence, the proof is finished.

Lemma 2 [5]. For a complete graph K,,, then

, n+1, for n=0(mod ?2);
X (Ky) = {

n, for n = 1(mod 2).
Lemma 3. If m 2 3 and n > 4, then

wc,, vK,)=m+n.
Proof. We have that

wc,, v K,)

o el )

=m+n.

2. Results about P, v K,

Theorem 2.1. If m + n # 3, then

n+l, m=1,n=0(mod?2),
Xod (P v Ky)=1n+2, m=1,n=1(mod2); m=2,n=1(mod2);
n+3, m=1,n=0(mod2).

Proof. When m =1, 2, we can get P, v K, = K,,,, from [5], the conclusion

is true.

Theorem 2.2. If m =23 and n 2 4, then

Xod(Py v K,)=m+n.
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Proof. Let the path P, = wjuy ---u,, and V(K) = {u11, Upys2s s Upysnt and
C={l,2,..., m+n-1, 0}. From Lemma 2, we only need to prove that there exists

a (m+n)-VDEC of P, v K,. Hence, we can make a proper edge coloring f of

P, Vv K, as:
fluu;)=i+ j—1Umodm+n) for1<i<n and m+1<j<m+n,
and
ftyyittyyy ;) =2m+i+ j—2(modm+n) for i<i, j<n.
Let the color subtractive set C(u) = C\C(u) for u € V(P, v K,,).
Case 1.If m>n 24, f(uu;,)=1i for 1 <i < n; wecan compute that
Cv)={26 -1}, for1<i<n
Clu)={Lnn+1,...,2n-1}
Cluy)={m-1,m+n-1,0,...,n-2};
Clu;))={i-Li,n+i—-1,n+i,...,.2n+i—2Hmodm+n), for 2 <i<m-—1.
Thus fis a (m + n)-VDEC of P, v K,,. This proves that the result is true.
Case2.If m =n, f(uu;q)=1i for 1 <i<n-—1, thereare
Clvy)={2(-1)}, for1<i<n
Clu))={Ln,n+1,....,2n-1};
Clu,)={n-1,2n-1,0, ..., n -2}
Cluj)={i-1L,i,n+i—-1,n+i ...,2n+i—-2}(mod2n), for 2<i<n—1.
Hence, fis (m + n)-VDEC of P, v K,,.
Case 3. If n > m, there are

Sl )=n—m+i, for1<i<m-—1,
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we get that

m+n

Clv)={2i-1)}, for 1<i< 5

C(vy)={2i-m—-n+1}, for m;nSiSn.
For m + n = 1(mod 2), there have
C(v;)={2(i -1}, for 1Si£%ﬂ+l;
Cv)={2i-m—-n+1}, for m+2n+1+1SiSn,

Clu)={n-m+1,nn+1, ..., 2n—1}(mod m + n);

Clu,)={n-1,m+n-1,0,1,...,n -2}

Cluj)={n-m+i,n—-m+i+L,n+i-1,...,2n+i—2}(modm + n),
forI<i<m-1.

Therefore, fis a (m + n)-VDEC of P, v K,,. The proof is finished.
3. Results about C,, v K,

Theorem 3.1. If n > 1, then

n+4, n=1(mod2);

’ C K =
de( 3V n) {I’l +3, n= O(mOd 2)

Proof. Because of C5 v K,, = K, 3, the result is true we know by [5].
Theorem 3.2. If m > 4 and n = 4, then
Xod(Cou vV K,) = m + n.

Proof. By Lemma 2, the inequality y,,(C53 v K,,) > W(C5 v K,,) is obvious, so
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we only need to prove that C3 v K, has a mapping (m + n)-VDEC only. For

convenient, we let that
C,, = wuy -~ u,uy,
V(K,)=1{vli=1,2,..., n}
c={,2,....,m+n-1, 0},
C(v) = C\C(v),
U =Vyy, i=12,...,m
Case 1. If m > n, we make a coloring function f as:
flvv;) =i+ j—2(modm+n),

for i=1,2,...,n; j=i+1Li+2,...,m+n and f(uu;p ) =i, i=12,...,m—1,

and f(u,u)=n-1.

Therefore, we can get that

Clv)={2G-1)}, for 1<i<nm

Clu)={l,n-1n,...,2n-1}

Clu,)={m-1,m+n-1,0,1,...,n -1}

Clu))={i-1,i,n+i—1,....,2n+i—2}(modm +n), for 2<i<m-1.

This proves that fis a (m + n)-VDEC of C,, v K,,.

Case 2. If m = n, we make f as:

f(vivj)=i+j—2(mod2n), i=1,2,....,m j=i+Li+2,...,2n
and
Sflup)=i+1, i=12,..,n-1

and f(u,u)=n-1.
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Then, we still have that

Cv)=06G-1} i=12..n

Clu)={2,n-1n,..,2n-1}

Clu,)={n-1,n2n-10,1,...,n -2}

Clu;)={i, i+, n+i—-1,...,2n+i-2}(mod2n), i=2,3,..,n—1.

That means that fis a (2r)-VDES of C,, v K,,.

Case 3. If n > m, we let fas:

f(vivj)=i+j—2(modm+n), i=1,2,...,m j=i+1lLi+2,...,m+n
and

Sl )=n-—m+i, i=12,..,m-2

and f(u,_ju,,) =n and f(u,u)=n-1.

Then, if m + n = 0(mod 2), we can see that

E(v,-):{Z(i—l)}, i=12, ..., m;—n;
Coy)={2i-(m+n)-1}, i= m;”+1, m;”+2,...,n;

Clu)={n-m+Ln-1n,...,n—m-1}
C(“m—l):{n_27 n, m+n—2,m+n—1,0,1,...,n—3};

C(“m):{n_L n,m+n-1, 0,...,71—2};

C(u;)

={n-m+i,n—-m+i+L,n+i-1,....,n—-m+i—-2Hmodn+m), i=273,...,m-2.
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If m+n =1(mod 2), we can compute

Co)=-1} =12 .. L
E(vl-)z{Zi—m—n}, i= m+2n+1+L m+2n+1+2,...,n;

Cu)=fn-Ln-m+Lnn+l..,n—m-1}
Clupy_)=tn-2,n,m+n-2,m+n-10,1,..., n -3}
C(“m):{n_L n,m+n-1, 0,...,71—2};

C(u;)

={n-m+i-L,n-m+i,n+i-1,...,.n—-m+i-2}modn+m), i=273,...,m-2.

(1]

(2]

(3]

(4]

(5]

(6]

(7]

We have proved that f'is a (m + n)-VDEC of C,, v K,,.

The proof is completed.
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