A NEW PRIORITIZATION METHOD IN THE ANALYTIC HIERARCHY PROCESS APPLIED ON A CASE STUDY OF THE CONVENTION SITE SELECTION

Milanka Gardašević Filipović

Abstract

The first part of this article is dedicated to the Analytic Hierarchy Process, particularly to the eigenvector prioritization method. The well-known fixed-point theorem is used for the new prioritization method which is presented in the second part of this article. Finally, using MATLAB, the numerical example, i.e., a case study of the convention site selection computed by the new prioritization method is given, and the result are pointing close a proximity to those achieved by the eigenvector prioritization method in the Super–Decision software. The result is high quality information about the factors using for the evaluating the site selection.

Keywords and phrases: multi-criteria optimization, the analytic Hierarchy process, prioritization vector..

Received October 13, 2012

References

- A. Arbel and L. Vargas, The analytic hierarchy process with interval judgments, Multiple Criteria Decision Making, A. Goicoechea et al., eds. Springer, Berlin Heidelberg, New York, 1992.
- [2] E. Cagno, F. Caron and A. Perego, Multi-criteria assessment of the probability of winning in the competitive bidding process, Internat. J. Project Management 19 (2001), 313-324.
- [3] H. E. Chacko and G. G. Fenich, Determining the importance of US convention destination attributes, J. Vacation Market. 6 (2000), 211-220.
- [4] J. D. Clark and K. M. Mc Cleary, Influencing associations site selection process, Cornell Hotel and Restaurant Administration Quarterly 36 (1995), 61-68.
- [5] Ching-Fu Chen, Applying the analytical hierarchy process (AHP) approach to convention site selection, J. Travel Res. 45(2) (2006), 167-174.
- [6] G. Crouch and J. Louviere, The determinants of convention site selection: a logistic choice model from experimental data, J. Travel Res. 43 (2004), 118-130.

- [7] M. Filipovic, The analytic hierarchy process as a support for decision making, SPATIUM 15-16 (2007), 44-59.
- [8] M. Gardašević Filipović and D. Šaletić, Multicriteria optimization in a fuzzy environment: system selection by the analytic hierarchy process, YUJOR 20(1) (2010), 71-85.
- [9] M. Gardašević Filipović and N. Djuranovic Milicic, An algorithm using trust region strategy for minimization of a nondifferentiable function, Numer. Funct. Anal. Optim. 32(12) (2011), 1239-1251.
- [10] Z. Kadelburg, M. Pavlović and S. Radenović, Common fixed point theorems for ordered contractions and quasicontractions in ordered cone metric spaces, Comput. Math. Appl. 59 (2010), 3148-3159.
- [11] W. G. Kim and H. C. Kim, The analysis of Seoul as an international convention destination, J. Convention Exhibition Management 5 (2003), 69-87.
- [12] M. Kwiesielewicz and E. van Uden, Inconsistent and contradictory judgments in pairwise comparison method in the AHP, Comp. Oper. Res. 31 (2004), 713-719.
- [13] S. Radenovic, Common fixed points under contractive conditions in cone metric spaces, Comput. Math. Appl. 58(6) (2009), 1273-1278.
- [14] T. L. Saaty, The Analytic Hierarchy Process: Planning, Priority, Setting, Resource Allocation, Mc Graw-Hill, New York, 1980.
- [15] T. L. Saaty and L. Vargas, Uncertainty and rank order in the analytic hierarchy process, Eur. J. Oper. Res. 32 (1987), 107-117.
- [16] W. R. Saaty, Decision Making in Complex Environments, Creative Decisions Foundation, Pittsburgh, 2003.
- [17] P. Van Laarhoven and W. Pedrycz, Fuzzy extension of Saaty's priority theory, Fuzzy Sets and Systems 11 (1983), 229-241.
- [18] N. Vinod and L. S. Ganesh, An empirical analysis of the use of the analytic hierarchy process for estimating membership values in a fuzzy set, Fuzzy Sets and Systems 82 (1996), 1-16.
- [19] R. Wittmann, Approximation of fixed points of nonexpansive mappings, Archiv. der Mathematik 58(5) (1992), 486-491.
- [20] K. K. F. Yuen, Analytic hierarchy prioritization process in the AHP application development: A prioritization operator selection approach, Appl. Soft Comput. 10 (2010), 975-989.