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A MATHEMATICAL MODEL OF IMMUNITY
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2720 Vanlgse, Denmark

Abstract

The purpose of the present paper is to derive a mathematical model of innate
and adaptive immunity. It is an ODE model with variables C for antigen, D for
dendritic cells, effector T cells denoted 7' and memory T cells denoted Ty, For
this mathematical model we can prove that for some values of the rate constants
it is tristable in the sense that there can be (at least) two stable singular points
and an unstable singular point. It is also a mathematical model of a vaccine. To
apply the model you need to fit the rate constants to a vaccined individual and
also to a possibly different set of rate constants for an individual that has not

been immunized. You can then compare the dynamics of the two scenarios.

1. Introduction

D belongs to the innate immune defense and 7, T, belong to the adaptive

immune defense. There is a survey article [30] about mathematical models in
immunology. See also the references [3], [8], [9], [10], [26], [27], [28], [29], [34],
[4], [6], [22], [23]. [33]. There is a monograph for tumor-induced immune system
dynamics, see [2]. I am not the first to report bistability in immunity, see [23]. But in
this reference the evidence is numerical whereas we prove bistability. There is a
monograph on the mathematics of virus dynamics and immunology, see [25].

Consider the following mass action kinetic system of innate and adaptive immunity.
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8C — D, (1)
C+D T, 2
T — Ty, (3)
C - 2C, “)
Ty +C —>T, &)
T +6C =0, (6)
T -0, (7)
Ty — 0, ®)
D=0, ©)
C=0. (10)

Here 8, o are positive integers. We are not modelling B cells. The complexes are

C(1) = dC,

C(5) =Ty,
c(6) = 2¢,

C@8)=T +oC,

C(10) =Ty, +C,

cn =c.
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Once we have numbered the complexes we have defined the rate constants k;;. For a

reaction
C)sC()), i jedl,....11}\{7}

the forward reaction rate is denoted k& jz and the reverse reaction rate is denoted kij.

(1) says, that antigen potentiate dendritic cells and (2) that antigen binds to
dendritic cells and prime T cells to effector T cells. Effector T cells produce memory
T cells (3). (4) means that antigen proliferates rapidly. Memory T cells can produce
effector T cells in the presence of antigen (5). Effector T cells kill antigen (6). The
last four reactions give birth and decay rates for all variables. See [24] figure on

page 455.

Define the kinetic matrix A: This is the ten by ten matrix with rate constants
K = (kay, kog, ka3, ksa, koa, k4. 10 kog, ki1, 9
ke,11- ko, 11- k29, ko5)

and the diagonal terms are minus the sums of rate constants k;; in the corresponding

column. That is they are
—ka1, kg, —k43, —(ks4 + kog ), —kos, 0, —kog, —(ky1, 9 + kag + k4, 10),
—(ke, 11 + ko, 11)-

Now define the four by ten stochiometric matrix ¥ ={Y;},_; 4 el L T

with matrix elements
Hi=98 Nz=L Neg=2 Yg=0, Y=L Y=l
Y =1 Yy3=1
=1 Tyg=1

Yys =1 Yyq0=1
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all other Y; =0. These are the stochiometric coefficients in the complexes

c), ..., ().

Now define the vector

with variables €%, D, C-D, T, Ty;, C?, T-C°, Ty - C, C. Here

¢ =(cp, €3, 3, C4)

= (C7 D7 T’ TM)‘

The definition of ¢! is
Y " i
{C }_Cll"'C)m,

where Y' is the ith column of ¥ , m is the number of chemical species, which is four

in our case. Then multiply A and ¥ , to get a vector with matrix elements
—kyCY,
k1 C® = koD + ko,
—k43C - D,
k43C - D = (ksy + koa)T + k4 10Tp - C,
k54T — kosTyy
ke, 11C,

—k98T . CG,
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—kq, 10Tm - C,
ki1, 9 = (ke, 11 + ko, 11)C.

Hence we do not need the gth coordinate of ¢”, since column g is y is the zero

column. Now the vector field giving the dynamics with mass action kinetics is
f(c) = YACY
see [7] which becomes

—8kyC® —ky3C D+ (ke 11— ko 11)C — kg 10Ty - C —OkogT - C® +kyy g
k1 C® —kgyD —ky3C- D +kng
k43C D= (ksy +koy )T +ky 19Ty - C ~kogT -C®
ksaT —kosThy —ka 10C T

fle)=

We shall find a polynomial giving candidates of singular points. From D’=0, we get

_ kao + kyy - C°

D
ka3C + kop

From 7" =0 and Tj; = 0 we get two equations in two unknowns 7 and T},
(k54 + k94 + kggcc )T - k4’ 10C . TM = k43C -D,
ksyT — (kos + kg, 10C)Ty = 0.

The Cramer solution formula gives

ks2C-D -k C
|k 4,10 /A
0 — (kgs + k4, 19C)

where
A = —(ksy + koy + kogC) (ko5 + kg 10C) + ksaky, 10C

< 0.
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Also

_ | ksa + Koy + kogC®  ky3C - D

Ty

Notice that T, T); >0, when C > 0. Insert these expressions in C’=0, and

multiply with
(kg3C + kgy ) A

to obtain
p(C) = (=8ky C® + aC + ki1 ) (kysC + kg ) A
— kyzClkao + ki C®) A
+ kg 100 kysksq (kg + ko CO)
4,10C K43k54 (ko9 + ko1
3

+ okogCo ™ kg3 (kos + Ky, 10C) (kag + k21 C°).
Positive singular points (C, D, T, Ty, ) have p(C) = 0. Here a = k¢ 11 — kg, 1.

2. The Two Dimensional System

We shall consider the subsystem of (1) to (10) with kgg = k4 19 =0, 6 =2,

~ —2kyC* —kysC - D +aC +k
e, py <[ 7HaC" ~as iy
k21C - k92D - k43C -D+ k29
From D" = 0 find
k 2
_ ka9 + k3 C

and insert this in C" = 0 to get after multiplying with k43C + kg5,

A
P(C) 2 =3kyzky C7 + (~2ky Koy + aky3) C*

+ (akgy + ki1, gkyz — kazkag ) C + ki, okop.



A MATHEMATICAL MODEL OF IMMUNITY 7
Theorem 1. Suppose p has three positive mutually distinct roots
0<C <Gy <G
and that
2
ka1ka3C3 + 2kp1kgrCs — kpgkyz < 0.

Then there exist three positive singular points

2
kg + kG| A C_
[Cl’ k43cl + k92 - (Cl’ Dl) (l - 1’ 2’ 3)

of f- (Cy, Dy) and (C3, D3) are stable and (C,, D,) is not asymptotically stable.
Definition. A singular point (C,, D,) of f is stable if given € > 0, there
exists a 8 > 0 such that every maximal solution ¢ of f~ with
|c(0)=(Cy, Di) [ < B
is defined on ] 0, +oo [ and
|c(t) = (Cw. Di)| < &
for t € |0, +oo .
It is asymptotically stable if it is stable and there exists a 3 > 0, such that
|c(0) - (Cs, Dy)| < B
implies
c(t) = (Cs, D)
as t — +oo, see [32].

Proof. It is clear, that

2
.. ka9 + ko Ci
U kg3Ci + koo

are singular points, i =1, 2, 3.
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Define two functions
p”, D’ :R, - R,
where

aC — 2k21C2 + kll, 9

D7 (C) =
[
giving the oo isocline C” = 0, and
pO(C) = kag + ky  C
h k43C + k92

giving the zero isocline D" = 0. We claim that

D>(C) > D°(C)

when
C,<C<(C, C<(,
and
D=(C) < D°(C)
whenever

C<C<(G, C>¢Cs
But by the fundamental theorem of algebra we can write
p(C) = =3ky1ky3(C = ) (C = C1)(C - C3). (an
But
D=(C) > D°(C)
is equivalent to

(aC = 2kp1C? + ki1, ) (kazC + kop) > (kg + k1 C? ) eg3C
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which is equivalent to
p(C) > 0.
Now the claim follows from (11).

We start by showing that (C,, D,) is not asymptotically stable. Define the

region in the plane
R={(C,D)e R*IC; > C > Cy, D’(C) < D < D*(C)},
where Cy € | Cy, C3[.
We claim that R is positively invariant. But on
(C,D7(C)), CelC,, Gy (12)

the vector field is

~ 0
f(C. D)= (K(C)]’

where

aC — 2k21C2 + kll, 9

K(C) = kag + kp C* = (koy + kyg3C)

k43C
<0
which is equivalent to p(C) > 0. Now compute
2
aoC

(ky3C + kop)?

and

- 2
oD _ —2kp1kg3CT — ki oka3
oC (€)= 2 ~2

k2C

< 0.
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But by assumption

oD"
Y (C3) < 0.

Since the numerator of

oD
Tal (C)

is an increasing function of C, we have

oD°
Y(Cl) <0

and hence

ap°

on an open neighbourhood of C; and C3 and for C € ] C,, G5 [.

Let c(t) = (C(t), D(t)) denote a maximal integral curve of f defined on
177, [, 1t <0, >0 Now when (C(0), D(0))=(C(0), D*(C(0))),
C(0) € [Cy, G,

9 (D). ()
= p'(0)- D7 (C) %

=D'(r)
<0.

Hence

D(r) < DT (C(t)).
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So the integral curve enters R, except possibly on

co = (Cy, DT(Cp)).
But if

c(t) = (C(r), D(r))
is an integral curve of f through ¢(0) = ¢, then we can find

¢{(0) = DA(F(Co. D*(Cp)))
> 0.

Since ¢;(0) = Cy, we can write by the standard trick from singularity theory

¢i(1) = Cy + 12h(t),
where h is smooth with 7(0) > 0. It follows that

c(t) > Cy
for te 0, e[, some € > 0.
On C = Cy, D < D”(C),

c1(0) > 0.

(€, D)), Celcy. Gl (13)

we find
f(C, DO(C)) — [il(c, DO(C))}
0

where

k29 + k21C2

7 0 _ 2 _
f(C, D°(C)) = —2kyC* — ky3C kusC + ko

"raC"t‘leg

>0
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and this is equivalent to p(C) > 0. So the integral curve enters R on (13). In fact, we

have
9(0°(c(e) - D)
= % C’(0)- D(0)
< 0.
Hence
D%(C() < D).
So
(C). D) R, te]0 el
some € > 0.

But now let ¢(z) be the maximal integral curve through

C(O) = (Co, Do) € R.
If (C,, D,) was asymptotically stable, then ¥ = +oo and
c(t) = (Cy, Dy)

as ¢ = +oo. But this is incompatible with the fact that R is positively invariant. Thus

(C,, Dy) is not asymptotically stable.

To show that (C3, D3) is stable define the open neighbourhood of (Cz, Ds),

U={(C, D)e R*IC; <C<C,y, D, <D<D,},

where
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and
61 < C3 < 62,

51 and 52 near C3. We claim, that U is positively invariant. But on C = C~’1, we

have
c1(0) > 0,
¢5(0) € [ Dy, Dy[. And when ¢,(0) = D,,
cf(0) > 0.

So c(t)e R, te€ ]0, e[, some € > 0. We have the inequalities

D, < D”(C)

< D)

< Dy

when C € ]C3, C,]. And also

C e [C}. G, because D is decreasing.

Now
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on
(€. D°(0)).
But
J 2
5p (k21C™ = koo D = ky3C - D + kg ) = —koy — ky3C
< 0.
So
D'<0, D=D,,
D'>0, D=D
On
C=C,, D>D"(C,)
we have
c1(0)< 0
exceptin c(0) = (52, D, ). But here
c[(0)< 0

so arguing as before there exists € > 0 such that

c(t)e U,
t € ]0, €[. But this shows that (C3, D3) is stable because U is positively invariant.

To see that U is positively invariant, suppose for contradiction that a maximal
integral curve ¢ of f, starting in ¢(0)e U, leaves U. By what we have shown we

have that c(t)e U, t e ]0, €[, some £ > 0. Now define
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A={re 10, M [lc(t)e U},

to =inf A
> 0.
Then we have that
c(ty) € oU.
From what we have shown
ct)e U

for ¢ < 1 close to #,. A contradiction and ¢ does not leave U. It follows that U is

positively invariant. But since U is compact c is defined for all > 0, see [1].

To show that (Cy, Dy) is stable define

vV ={(C, D)e R?IC; < C < C,, D, < D < D,},

where
51 <,
52 > (,
51, 52, close to Ci,
Dy = D(Cy),
D, = D7(G)),
and argue as above, to show stability. 0

The characteristic polynomial of the linearization F of f at a singular point is

Fi-A Fp F3 Fig
F Fr =L 0 0

det(F — Aid) = | 2! 22 (14)
F3 F3 Fy3-L  F3y

Fy 0 Fy3 Faq =)
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Here A € C and id is the four by four identity matrix. Also

F11 =a-— k43D - 4k98T -C - k4’ IOTM - 4k21C,

Fp = —kg3C,

F3 = —2kogC>
13 = —2kogC"~,

Fig = —kg 10C,

Fy1 = 2ky C — ky3D,
Fyy = —ky3C — ko,
F31 = ky3D + kg 10Ty — 2kogT - C,
F3p = ky3C,
Fy3 = ~(ksy + kog + kogC?),
F34 = k4, 10C,
Fyy = —ky 10Tm »
Fy3 = ksq,
Fyy = —kos — ky,10C
when & = 6 = 2. Decompose (14) after the last column
det(F —Aid)
= (Fgq = M) ((F1 =A)(Fyp = M) (F33 = M)
+ F3F1F3n — F31(Fp —A) Fi3 — Fa1Fip(F33 — 1))
— Fiy(Fy F3oFys3 + (Fop — M) (F33 = L) Fyy — F31(Fyp — M) Fay)

= F3y((F = M) (Fyp = M) Fyz = Fy1(Fyy = M) Fiz = FioFy 1 Fy3).
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If we now take kgg = kg 19 =0, 8 =0 =2, we obtain

det(F = Lid) = (F33 = M) (Fag = M) (X = (Fy + Fy)A = Fy Fpy).

Example. Take

Then there are three singular points (Cy, Dy), (C,, D,), (C5, D3), with
C<C)<Cy
and
(C. Dy) = (0.023006, 0.454517),
(Cy, D) = (0.253182, 0.057818),

(C3. D3) = (17172, 0.014375),
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where (Cy, D) and (C3, D3) are stable and (C,, D,) is unstable. This example is

an example of Theorem 1 because
ka1ka3C3 + 2k 1korCs — kagkys < O,
In particular, DJ?(C,», D) i =1, 2, 3 is nonsingular.
Let

5
_ _ka3Ci Ky Ci + ko
" ksy +koy ky3Ci + ko

and

ks
95

T, =

Then we have the proposition

Figure 1. A phase portrait of the two-dimensional ODE model k43 = 40.

Proposition 1. Let (C;, D;) be positive singular points for f, i=1,2,3. If

Df(q, D) i=1,2,3 is nonsingular, for K = K, k,-(} >0, except kgg =0,
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kg, 10 = 0, then there exist smooth functions

ch(K),

where i =1, 2, 3, such that
FI(K), K) =0, ck(Kg) = (Cp, Dy, T, Ty ).

There are positive values of the rate constants, such that Ci and cf are stable and

c*2 is unstable, if the linearization of f at (C;, D;) has eigenvalues with negative

real part, i =1, 3 and for i =2 it has an eigenvalue with positive real part.

This follows from the implicit function theorem and the continuous dependence

of roots of a polynomial on its coefficients, see [31].

Tristability can be lost. In the example, above change k43 to k43 = 20. It looks

as if only (C3, D3) survives see Figure 2.

In Figure 1 and Figure 2, I have plotted phase portraits of f From the phase

portrait in Figure 1, you can see, that there is a separatrix which appears to be the

unstable manifold of the saddle (C,, D,). It separates the basin of attraction of

(Cy, Dy) and (C3, D3). We also have
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Figure 2. A phase portrait of the two-dimensional ODE model k43 = 20.
Proposition 2.

det D-}T(Cz, D) <0

or
trace D]?(CZ, Dy 20
and
det Dfic,, p;) 2 0
or

trace DJ?(C,-, D;) <0,
where i =1, 3.

Proof. The linearization of f at a singular point is

~ —4k21C — k43D +a —k43C
2k C = k3D ~ky3C —koy )
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Now the proposition follows from Theorem 1.

In fact, if the eigenvalues A have PR(A) <0, then the equilibrium is

asymptotically stable, see [32]. Therefore if an equilibrium is not asymptotically

stable, then there exists an eigenvalue with PR(A) = 0. All eigenvalues A have

R(A) < 0 is equivalent, by the Routh Hurwitz criterion, to

trace Df <0,
and
det Df > 0.

Negating this gives the first two inequalities in the statement of the proposition.
Assume, that there is an eigenvalue A with 2R(A) > 0 for

DJ?(Ci, D;):

i =1,3. Then (C;, D;) is unstable, see [32, p. 312], which is incompatible with

what we have proven. Therefore

DJ?(C», D) = (al blj
P aq d

does not have an eigenvalue A with R(A) > 0.

Define

A =(a +d)* - Hayd, - bicy).

We claim, that

(i) All eigenvalues A have SR(A) < 0 is equivalent to

(ii) @ +d, <0 and ayd; — by, = 0.

(ii) implies (i). We have the formula

al+dli\/z

)\‘i: 2
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If A>0, then A4 <0 andif A <0 we also clearly have R(A;) < 0.

(1) implies (ii). If a;d| — bjc; < 0, then

Ay >0
no matter what a; + d; is. So we must have
aydy — bic; 2 0.

If g +d; >0, then

(1) If A <0, then R(A) > 0.

() If A =0, then A, > 0.

So we must have a; + d; < 0. This proves the proposition. O

We have the following formulas for the trace and determinant of Df at a

singular point

1

z_ 1 2\ 2
trace Df = k43C n k92 ( (5k43k21 + k43 )C
+((a — kop ) ka3 + kop(=4ky; — ku3))C
— kyzkog + koo (a = ko3))
and
= 1 2 3 2\ 2

+ (kg (4kpikgy — akys) — akgykys ) C

2
— akyy + kyzkorkag)-
Suppose we have measeurements
c(t;) = (C(t;), D(t;) = (e1(1;). 2 (1;)),

where t;, =1y +¢€i, i=1,..., N, Ne N.
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We can fit the rate constants k;; to mesurements by the following well-known

approach. Define for € > 0 the error functions

N
Ei(e kot kaz. a kit 9) = ) (e(tian) = er(r) = € ().
i=1

N
Eo (&, ka1, ka3, koo, ko ) = Z(Cz(fm) — ey (1) — e (c(t;)))>.
i=1

Then

JE; _
T
OE, _
okyz O
3E,
20 =%
B _
ok1, 9

are four linear equations with four unknowns. If the coefficient matrix is nonsingular,

you can solve for the rate constants ko, k43, a, k11 9. Then

oE, B
ER
0E,
kg3 o
oE, B
gy O
o, _

ok 29
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are also four equations in four unknowns and if the coefficient matrix is nonsingular,

you can solve for ks, ky3, koo, kog.

The two pairs of equations are

2 a)t D awlal)  awt Y a@?

2 allal) =Y ablobl Y ablob) Y aow)|
23w Y atPat) > a@? Y aw |
) aw? =) atal) Y al) 1

Z (c1(tisn) = et er (1)
1 Z (c1(tiv1) — a(t)) () o ()
e Z(Cl(tm) =) e (t;) ’
Z (c1(ti41) = (7))

where
ka1
k
K| = 43
a
ki, 9
and

ch(li )yt —Z a () er(t;) —Z a(t;) ea(t;) ch(ti )
ch(ti ) —Z a(t;)er(1;)* —Z alt) er (1) ZCl(ti)Cz(ti) P
ch(ti e (t;) —Z a(t)ea(t;)? —Z e2(1;)? ZCz(ti) ?
ch(ti ) —Z cr(t;) ea(t;) —Z () 1

D (i) - ext)al)
1 Z(Cz(fm)—Cz(t,-))q(fi)Cz(fi)
e Z(Cz(fm) — (1)) e (t;) ’
D (e~ e2w))
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where

ka1
ka3
koo |
ka9

For & = 1, we can preclude tristability.

Theorem 2. Suppose & =1. Then there is a unique positive singular point
(C_, D). If

k21k92 - k29k43 < 0, a < O,

then it is stable.

Proof. We have

~ —kr(C +aC —kgsC - D +k
#c. D) :(k 21 43 11,9}
21C = k43C - D = koD + kag
Define
pO(C) = kag + kyiC
ka3C + kop
and
o (~ky; +a)C +kyy g
D”(C) = il
43
Then
’ ko1kor — krok
(DY) () = Xaiko2 = ka9 4213
(kg3C + kop)
and

ki1, 9

(D) (C) =~
kq3C
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From D’ =0, get

_ ka9 + k1€
~ ka3C + ko

and insert it in C” = 0, to obtain

p(C)

(=2ka kg3 + aky3) C* + (ki1 okas + kopa — kopkyy — ky3kag)C

+ kooki1, 9

a2C2 + sz +C
=0.

By the solution formula for roots of a quadratic equation

C. = —bz T '\/bzz - 4a2c2
+ =

- 2612

give rise to candidates of positive singular points. We can see, that the discriminant is

positive and there is one positive root C_ and one negative root C,. Now define
U={(C, D)e RZIE‘I <C<Cy, Dy <D<Dy},
where
D, = D7(Cy), Dy =D(C,)
and C~‘1 <C_< C~‘2, 61, 52 close to C_.
By the fundamental theorem of algebra
p(C) = (=2ky kg3 + aky3) (C = C_)(C - C,).
So p(C)>0 when Ce |C,, C_[. On C = Cj,

c1(0)>0
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when ¢,(0) € [Dy, D,[, and

c/(0)>0

when ¢,(0) = D,. We have

F(c. p™(C)) = [K?C)],

where K(C) <0, when C e ]C,, C_[. On C = C,,
c1(0)< 0
when ¢,(0) e |Dy, Dy[, and
cf(0)< 0
when ¢,(0) = D;. We have inequalities
D, < D™(C)
< D)

<D1

whenever C e ]C_, C;] Also
f)l <D
< D)

< D”(C)

IN
(o]
(3}

when C e [}, C_[.

27
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We also have

d
3p (k21 = koD = ky3C - D+ kag) = ~koy — ky3C

<O0. (15)
Now D" =0 on
(¢, D°(0)).
By (15),
D' <0, D=D,,
D'>0, D=D,.
Arguing as in Theorem 1, Theorem 2 follows. 0

3. Summary

In the present paper, we developed a four dimensional ODE model of immunity.
For some values of the parameters there are two stable singular points and one
unstable singular point. This was accomplished by considering a simpler two
dimensional model with variables C and D for antigen and dendritic cells,
respectively. This model is tristable for some values of the parameters and the
implicit function theorem implies tristability of the original four dimensional model.

We also proposed a stability test for vaccines.
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