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Abstract 

A fourth-order numerical method is proposed for solving first-order nonlinear 

integro-differential equations. The method is based on finite difference 

approximation of derivatives and an unconventional quadrature approximation 

of integrals. The unconventional quadrature scheme emanates from 

approximating the leading error term of the conventional trapezoid quadrature 

rule. The nonlinear non-homogeneous parts are discretely interpolated. This 

resulted to a fully nonlinear algebraic system which is approximated using a 

nonlinear solver. The proposed method is tested on two nonlinear non-

homogeneous equations with known exact solutions. Numerical solutions are 

observed for convergence, order of accuracy and appearance of non-physical 

oscillations. The results show that the method is convergent, has fourth-order 
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of accuracy, and produce no non-physical oscillations for all mesh sizes - 

which is a numerical attestation of the stability of the proposed method. 

1. Introduction 

Many of the nonlinear phenomena that occur in industry and technology can be 

formulated as nonlinear integro-differential equations [1]. For instance, integro-

differential equations arise in heat transfer with memory [2, 3], motion of viscoelastic 

materials [4], infectious disease modeling [5], optimal control [6], hematopoietic 

stem cell modeling [7], modeling complex interaction of active particles in 

mathematical kinetic theory [8], and in modeling tumor growth with effect of 

chemotherapy treatment [9]. 

The numerous applications mentioned above have elicited a lot of research on 

the theory and solution of integro-differential equations (IDEs). 

The theoretical analysis of IDEs can be found in [1]. In the applications 

mentioned above the resulting IDEs are generally nonlinear hence finding their exact 

solution in closed form is generally not possible. Hence, numerical algorithms for 

IDEs have also seen a lot of research interests. Several numerical approaches have 

evolved for approximating the solution of this kind of equations. For instance, Al-Saar 

and Ghadle [10] suggested some methods based on the modification of the 

variational iteration methods, Laplace Adomain decomposition method and the 

Homotopy perturbation methods. Shirani, et al. [11] used shifted Lengendre 

polynomials to solve nonlinear Volterra-Fredholm integro-differential equations. In 

[12], Chebyshev pseudo-spectral method is used to approximate the solution of 

systems of Fredholm integro-differential equations. A differential-integral quadrature 

method is suggested for discretizing an integro-differential equation in [13]. Other 

existing methods include the Nystrom method [14], variational iteration methods [15] 

and the exponential spline approach [16]. The order of accuracy of these methods is 

hardly investigated nor reported and most of them cannot be easily implemented, 

even their derivations are very complicated, requiring so much calculations and 

computations. 

Consequently, there is still a need for a method which is easy to formulate, yet 

has high order accuracy and is simple to automate. This is the thrust of this current 
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paper - to propose, implement and verify a fourth-order convergent numerical 

method for the following nonlinear Fredholm integro-differential equation: 

 ( ) ( )( ) ( )( )∫++=
b

a
dyyuyxkuuxfxg

dx

du
,,,,    ( ) ,, R⊂∈ bax  (1) 

( ) ,0uau =  

where a and b are both constants; ( ),xg  ( )( )xuxf ,  and ( )( )yuyxk ,,  are known 

functions of their arguments. The function ( )( )yuyxk ,,  is known as the kernel of 

the integral, ( )xu  is the unknown function that is to be determined, ,: RR →g  

,: RR →g  .: RRRR →××k  We assume that function f is Lipschitz 

continuous with respect to the second argument and with a Lipschitz constant 

,01 ≥a  

( ) ( ) 21121 ,, zzazxfzxf −≤−    for all   ,1z  .2z  

We also assume that the kernel k is Lipschitz continuous with respect to the third 

argument, and with a Lipschitz constant .02 ≥a  With these conditions, it can be 

shown that the problem has a unique solution, see [17, 18] for example. 

Nwaigwe, et al. [19-22], see also [23, 24] have suggested several numerical 

methods for nonlinear Fredholm equations, in particular they (see [19]) exploited the 

series expansion of the truncation error of the standard trapezoid rule, then applied 

one-sided finite difference approximations to derive a fourth-order numerical method 

for a second kind Fredholm integral equation. This present work is to extend that idea 

in [19] to the nonlinear first-order integro-differential equation in (1). Consequently, 

the details of our suggested numerical approximation of problem (1) are given in 

Section 2. Two numerical examples are given and used to assess the performance of 

the method in Section 3, and we give some concluding remarks in Section 4. 

2. Numerical Algorithm 

The numerical algorithm for approximating the solution of problem (1) is 

presented in this section. Select an ,
+∈ ZN  such that 51 ≥+N  is a number of 



C. NWAIGWE, A. WELI and J. U. OKAFOR 

 

4 

 

points in [ ]., ba  Define a grid .
1

:,,,1,0:








−
−

==+==Ω
N

ab
hNjjhax jh K  

Define the operators: 

 ( ) ( ( ) ( ) ( )).2431 hxfhxfxfxf iiii ±−±+−±=∆±  (2) 

The following lemmas will be useful in the numerical formulation below. 

Lemma 2.1 (Trapezoid Rule, see [25]). Let [ ],,0
5

NxxCf ∈  and h, jx  be 

defined as above, for Nj ,,1,0 K=  and .+∈ ZN  Then 

( ) ( ( ) ( )) [ ( ) ( )]Nj

N

j

jj

x

x
xfxf

h
xfxf

h
dxxf

N
′−′++= ∑∫

−

=

+ 122

21

0

1
0

 

[ ( )( ) ( )( )] ( ).
720

63
0

3
4

hOxfxf
h

N +−−  (3) 

Lemma 2.2 (See [26-27]). Let ,0 R∈< h  

(i) if ( ),,23
ii xhxCf −∈  then 

 ( ) ( ) ( ),
2

1 2
1 hOxf

h
xf ii +∆=′ −  (4) 

(ii) if ( ),2,3 hxxCf ii +∈  then 

 ( ) ( ) ( ),
2

1 2
1 hOxf

h
xf ii +∆=′ +  (5) 

(iii) if ( ),,45
ii xhxCf −∈  then 

( ) ( ( ) ( ) ( )hxhxfxf
h

xf iiii 2364825
12

1
−+−−=′  

( ) ( )) ( ),43316 4hOhxfhx ii +−+−−  (6) 

(iv) if ( ),4,5 hxxCf ii +∈  then 

( ) ( ( ) ( ) ( )hxfhxfxf
h

xf iiii 2364825
12

1
+−++−=′  

( ) ( )) ( ),43316 4hOhxfhxf ii ++−++  (7) 
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and 

(v) if ( ),2,25 hxhxCf ii +−∈  then 

( ) ( ( ) ( ) ( ) ( ))hxfhxfhxfhxf
h

xf iiiii 2882
12

1
+−++−−−=′  

( ).4hO+  (8) 

Equations (3)-(8) are used to derive the scheme below. 

2.1. The numerical scheme 

Collocate the integro-differential equation (1) at ,hix Ω∈  we get 

 ( ) ( ( )) ( ( ))∫ =−−−
N

i

x

x
iiii

x

dyyuyxkxuxfxg
dx

du

0

,0,,,    .hix Ω∈∀  (9) 

Using Lemmas 2.1 and 2.2, we proposed the approximations 

 









−+−

−=+−+−

=−+−+−

=

++−−

−−−−

++++

,else,88

,,1,316364825

,1,316364825

12

1

22

4321

4321

ihihii

iiiii

iiiii

x
uuuu

NNiuuuuu

iuuuuu

hdx

du

i

 (10) 

and 

 ( ( ))∫ =
Nx

x

h
ii Idyyuyxk

0

,,,    ,,,2,1 Ni K=  (11) 

where 

h
iI  

( ) [ ( ) ( )∑
=

+−+ξ=

N

j

iijji
N
j uxxkuxxk

h
uxxk

0

1100 ,,4,,3
24

,,  

( ) ( ( )NNii uxxkuxxk ,,,,4 22 −−  

( ) ( )].,,,,4 2211 −−−− +− NNiNNi uxxKuxxK  (12) 



C. NWAIGWE, A. WELI and J. U. OKAFOR 

 

6 

 

Hence, we arrive at the following algorithm: 

 ( ) ( ( )) ,0, =−−− h
iiii

x

Ixuxfxg
dx

du

i

   for   ,hix Ω∈  (13) 

where 

ix
dx

du
 and h

iI  are defined in (10) and (12) respectively, and 
N
jξ  is defined as 









<≤

=

=ξ

otherwise.0

,1if1

,,0if21

Nj

Nj

h
N
j  

The scheme (13) constitutes of a system of N equations in N unknowns. By 

including the initial condition of the problem we can summarize the scheme as 

follows: 
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( ( ) ( )
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( ( ) ( )
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( ( ) ( )
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00

NiI
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h
i

iiiihihii

h
i

iiiiiiii

h
i
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 (14) 

This system is approximated using Newton-Raphson method and implemented in 

an in-house python code. 

3. Numerical Experiments 

In this section, we problem two examples of integro-differential equations, which 

have known close-form exact solution, for the purpose of verifying the accuracy of 

the method. The two examples are constructed via the method of manufactured 

solutions [20-21, 28-29]. In each example, the problem is solved on several grids 

with decreasing mesh sizes and the error of the numerical solution is computed in 

infinity norm, the experimental order of convergence is also recorded. The objectives 

are (i) to verify if the numerical solution computed by the proposed method 

converges to the exact solution, (ii) to observe the order of convergence of the 

method and if they agree with those of approximations used in deriving the method, 

and (iii) to observe stability numerically. 
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Example 3.1. Our first example is the following nonlinear integro-differential 

equation: 

( ) ( )
( )

( )( )
∫ +

+
+

−=
1

0
2

3

22
,

1

cos

3

1
dy

x

yuxy

xux
xg

dx

xdu
   ( ),1,0∈x    ( ) ,00 =u  

where 

( )
( )

.
25.01

5.0

35.0tan

1

1
23168277.0

22122
xxx

x
xg

+
+

+
+

+
−=

−
 

The exact solution of this problem is 

( ) ( ).5.0tan 1 xxu −=  

The solution of Example 3.1 is computed on a sequence of grids and the results 

are displayed in Table 1. It can be seen that the error of the numerical solution 

vanishes as the mesh size decreases. Also, the table shows that the observed 

(experimental) order of convergence is four which agrees with the approximation 

errors involved in the discritization of both the derivatives and integral. These results 

indicate that the method is convergent for this problem. 

Further, Figures 1 and 2 display the plots of the exact and numerical solutions on 

different grids. The figures show that the numerical solution agrees with the exact 

solution even on a very coerce grid of ten points. Again, the plots show that there are 

no non-physical oscillations, which numerically indicate the stability of the method. 

Example 3.2. The second example is 

( ) ( ) ( )
( )

( )
( ) ( )∫ −+

+
+

+=
1

0
24

322

2

2

,
11

dy
yuyu

yuyx

xu

xxu
xg

dx

xdu
   ( ),1,0∈x    ( ) ,00 =u  

where 

( )
( )

( ( )( ) ).5416231
1

65

6

2

+π−++−
+

= xx
x

x
xg  

The exact solution of this problem is 

( ) .3xxu =  
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The results of the solution of Example 3.2 computed with the proposed method 

on a sequence of grids are displayed in Table 2. The table shows that the error (in 

infinity norm) decreases as the mesh size decreases. Like in Example 3.1 above, the 

results also show that the experimental order of convergence is four. Hence, we 

conclude that the method is also convergent for this problem. Figures 3 and 4, which 

display the plots of the exact and numerical solutions on different grids, show that the 

numerical solution computed with the proposed method agrees with the exact 

solution. The plots also show the absence of non-physical oscillations. 

Table 1. Computed results for Example 1, where 1+N  is the number of grid 

points, EOC is the Experimental Order of Convergence. The errors are computed 

in infinity norm 

N Error (in Infinity Norm) EOC 

6 6.43066587189267e-05  - 

12 3.34534117701901e-06 4.2647428733 

24 1.20519249149909e-07 4.7948178576 

48 3.89512530563074e-09 4.9514500394 

96 2.85725054727237e-10 3.7689702860 

192 2.10523265486984e-11 3.7625759659 

384 2.03176364621527e-12 3.3731751890 

 

Table 2. Computed results for Problem 2, where 1+N  is the number of grid 

points, EOC is the Experimental Order of Convergence. The errors are computed 

in infinity norm 

N Error (in Infinity Norm) EOC 

10 0.000856277542524153 - 

20 9.15957652634081e-05 3.224725683573 

40 5.28402751687196e-06 4.115571015276 

80 2.78801202235890e-07 4.244329292054 

160 1.53948808145898e-08 4.178714178996 

320 8.95607366047102e-10 4.103440494135 

640 5.69509994718942e-11 3.975073327779 
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(a) Plot of numerical and exact solution of Example 1 with 10 mesh points 

 

(b) Plot of numerical and exact solution of Example 1 with 20 mesh points 

 

(c) Plot of numerical and exact solution of Example 1 with 80 mesh points 

Figure 1. Plots of exact and numerical solutions of Problem 1. 

 

Figure 2. Plot of exact and numerical solutions of Example 1 on different grids. 
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(a) Plot of numerical and exact solution of Example 2 with 10 mesh points 

 

(b) Plot of numerical and exact solution of Example 2 with 40 mesh points 

 

(c) Plot of numerical and exact solution of Example 2 with 100 mesh points 

Figure 3. Plots of exact and numerical solutions of Problem 2. 

 

Figure 4. Plot of exact and numerical solutions of Example 2 on different grids. 
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4. Conclusion 

A high-order numerical scheme, (14), is proposed for Fredholm-type first-order 

integro-differential equations. The simplicity of the derivation is that all the 

approximations are based on fundamental concepts of numerical analysis which can 

all be derived from Taylor’s theorem. The proposed scheme which is in the form of a 

nonlinear algebraic system is implemented in python and two examples are used to 

assess the performance of the algorithm. The numerical results, which are presented 

using tables and figures, show that 

(i) the numerical solution, computed with the proposed method on a sequence of 

grids, converges to the exact solution, 

(ii) the method has high-order (fourth order) of accuracy, and 

(iii) it produces no non-physical oscillations, even on a very coerce mesh; this 

gives an indication of the stability of the method. 
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