A NOTE ON THE VERTEX-DISTINGUISHING EDGE COLORING OF $P_m \lor K_n$ AND $C_m \lor K_n$

CHUANCHENG ZHAO, SHUXIA YAO, JUN LIU and ZHIGUO REN

School of Information Science and Engineering
Lanzhou City University
Lanzhou 730070, P. R. China

Abstract

In this paper, we obtain the Vertex-distinguishing Edge Chromatic Number of $P_m \lor K_n$ and $C_m \lor K_n$.

1. Introduction

The problem which is due to computer science [1-6] about Vertex-distinguishing Edge Coloring of G is a widely applicable and extremely difficult problem. In [7] introduced the Vertex-distinguishing Edge Coloring of graph, and give the relevant conjecture.

Definition 1 [8-10]. G is a simple graph and k is a positive integer, if it exists a mapping of f, and satisfied with $f(e) \neq f(e')$ for adjacent edge $e, e' \in E(G)$, then f is called a Proper Edge Coloring of G, is abbreviated k-PEC of G, and

2010 Mathematics Subject Classification: 05C15.

Keywords and phrases: path, cycle, complete graph, join-graph, vertex-distinguishing edge chromatic number.

This study is supported by Lanzhou City University Ph. D. Research Fund (LZCU-BS2013-09 and LZCU-BS2013-12).

Received June 3, 2016
\[\chi'(G) = \min \{ k \mid k \text{PEC} \} \]

is called the Edge Chromatic Number of \(G \).

Definition 2 [1-6]. For the proper edge coloring \(f \) of simple graph, if it is satisfied with \(C(u) \neq C(v) \) for \(V(G) (u \neq v) \), where \(C(U) = \{ f(uv) \mid uv \in E(G) \} \), then \(f \) is called the Vertex-distinguishing Edge Coloring, is abbreviated \(k \)-VDEC of \(G \), and

\[\chi'_{vd} = \min \{ k \mid k \text{VDEC} \} \]

is called the Vertex-distinguishing Edge Chromatic Number of \(G \).

Definition 3. For a graph \(G \), let \(n_i \) be the vertex number of the vertices of degree \(i \), we call

\[\mu(G) = \max \left\{ \min \left\{ \lambda \left(\frac{n_i}{\delta} \right) \geq n_i, \delta \leq i \leq \Delta \right\} \right\} \]

the Combinatorial Degree of \(G \), where \(\delta \) and \(\Delta \) are the minimal and maximal degree of \(G \), respectively.

Conjecture [1-5]. For a connected graph \(G \) of order not less than 3, then

\[\mu(G) \leq \chi'_{vd} \leq \mu(G) + 1. \]

Note that the left side of the inequality is obviously true.

Let \(G \) and \(H \) are two simple graphs, the joint graph of \(G \) and \(H \), denote by \(G \cup H \), is obtained from the disjoint union of \(G \) and \(H \) by making all of \(V(G) \) adjacent to all of \(V(H) \).

Because \(P_1 \cup K_n = K_{n+1} \) and \(P_2 \cup K_n = K_{n+2} \) has been discussed in another paper, we will consider the general case \(P_m \cup K_n \) and \(C_m \cup K_n \). The terms and signs we use in this paper but not denoted can be found in [8-10].

Lemma 1. Let \(m \geq 3 \) and \(n \geq 4 \), \(\mu(P_m \cup K_n) = m + n \).

Proof. For \(m = 3 \) and \(n = 3 \), we can compute that

\[\max \left\{ \min \left\{ \theta \left(\frac{\theta}{6} \right) \geq 2 \right\} \text{ and } \min \left\{ \theta \left(\frac{\theta}{7} \right) \geq 6 \right\} \right\} = 8. \]
For $n \geq 4$ and $m + n \neq 8$, we get that

$$\max\left\{ \min\left\{ \frac{\theta}{n+1} \geq 2 \right\}, \min\left\{ \frac{\theta}{n+2} \geq m - 2 \right\} \text{ and } \min\left\{ \frac{\theta}{m+n-1} \geq n \right\} \right\}$$

$$= m + n.$$

Hence, the proof is finished.

Lemma 2 [5]. For a complete graph K_n, then

$$\chi'_{vd}(K_n) = \begin{cases} n + 1, & \text{for } n \equiv 0 \pmod{2}; \\ n, & \text{for } n \equiv 1 \pmod{2}. \end{cases}$$

Lemma 3. If $m \geq 3$ and $n \geq 4$, then

$$\mu(C_m \lor K_n) = m + n.$$

Proof. We have that

$$\mu(C_m \lor K_n)$$

$$= \max\left\{ \min\left\{ \frac{\theta}{n+1} \geq m \right\} \text{ and } \min\left\{ \frac{\theta}{m+n-1} \geq n \right\} \right\}$$

$$= m + n.$$

2. Results about $P_m \lor K_n$

Theorem 2.1. If $m + n \neq 3$, then

$$\chi'_{vd}(P_m \lor K_n) = \begin{cases} n + 1, & m = 1, n \equiv 0 \pmod{2}; \\ n + 2, & m = 1, n \equiv 1 \pmod{2}; \\ n + 3, & m = 1, n \equiv 0 \pmod{2}. \end{cases}$$

Proof. When $m = 1, 2$, we can get $P_m \lor K_n = K_{m+n}$ from [5], the conclusion is true.

Theorem 2.2. If $m \geq 3$ and $n \geq 4$, then

$$\chi'_{vd}(P_m \lor K_n) = m + n.$$
Proof. Let the path $P_m = u_1u_2 \cdots u_m$ and $V(K) = \{u_{m+1}, u_{m+2}, \ldots, u_{m+n}\}$ and $C = \{1, 2, \ldots, m + n - 1, 0\}$. From Lemma 2, we only need to prove that there exists a $(m + n)$-VDEC of $P_m \vee K_n$. Hence, we can make a proper edge coloring f of $P_m \vee K_n$ as:

$$f(u_i u_j) = i + j - 1 \pmod{m + n} \quad \text{for} \quad 1 \leq i \leq n \quad \text{and} \quad m + 1 \leq j \leq m + n,$$

and

$$f(u_m i u_{m+j}) = 2m + i + j - 2 \pmod{m + n} \quad \text{for} \quad i \leq i, \quad j \leq n.$$

Let the color subtractive set $\overline{C}(u) = C \setminus C(u)$ for $u \in V(P_m \vee K_n)$.

Case 1. If $m > n \geq 4$, $f(u_i u_{i+1}) = i$ for $1 \leq i \leq n$; we can compute that

- $\overline{C}(v_i) = \{2(i - 1)\}$, for $1 \leq i \leq n$;
- $C(u_1) = \{1, n, n + 1, \ldots, 2n - 1\}$;
- $C(u_m) = \{m - 1, m + n - 1, 0, \ldots, n - 2\}$;
- $C(u_i) = \{i - 1, i, n + i - 1, n + i, \ldots, 2n + i - 2\} \pmod{m + n}$, for $2 \leq i \leq m - 1$.

Thus f is a $(m + n)$-VDEC of $P_m \vee K_n$. This proves that the result is true.

Case 2. If $m = n$, $f(u_i u_{i+1}) = i$ for $1 \leq i \leq n - 1$, there are

- $\overline{C}(v_i) = \{2(i - 1)\}$, for $1 \leq i \leq n$;
- $C(u_1) = \{1, n, n + 1, \ldots, 2n - 1\}$;
- $C(u_m) = \{n - 1, 2n - 1, 0, \ldots, n - 2\}$;
- $C(u_i) = \{i - 1, i, n + i - 1, n + i, \ldots, 2n + i - 2\} \pmod{2n}$, for $2 \leq i \leq n - 1$.

Hence, f is $(m + n)$-VDEC of $P_m \vee K_n$.

Case 3. If $n > m$, there are

$$f(u_i u_{i+1}) = n - m + i,$$ for $1 \leq i \leq m - 1,$
we get that
\[
\overline{C}(v_i) = \{2(i - 1)\}, \quad \text{for } 1 \leq i \leq \frac{m + n}{2};
\]
\[
\overline{C}(v_i) = \{2i - m - n + 1\}, \quad \text{for } \frac{m + n}{2} \leq i \leq n.
\]

For \(m + n \equiv 1(\text{mod } 2)\), there have
\[
\overline{C}(v_i) = \{2(i - 1)\}, \quad \text{for } 1 \leq i \leq \frac{m + n + 1}{2};
\]
\[
\overline{C}(v_i) = \{2i - m - n + 1\}, \quad \text{for } \frac{m + n + 1}{2} + 1 \leq i \leq n,
\]
\[
C(u_1) = \{n - m + 1, n, n + 1, \ldots, 2n - 1\} (\text{mod } m + n);
\]
\[
C(u_m) = \{n - 1, m + n - 1, 0, 1, \ldots, n - 2\};
\]
\[
C(u_i) = \{n - m + i, n - m + i + 1, n + i - 1, \ldots, 2n + i - 2\} (\text{mod } m + n),
\]
for \(1 \leq i \leq m - 1\).

Therefore, \(f\) is a \((m + n)\)-VDEC of \(P_m \vee K_n\). The proof is finished.

3. Results about \(C_m \vee K_n\)

Theorem 3.1. If \(n > 1\), then
\[
\chi'_{vd}(C_3 \vee K_n) = \begin{cases}
 n + 4, & n = 1(\text{mod } 2); \\
 n + 3, & n = 0(\text{mod } 2).
\end{cases}
\]

Proof. Because of \(C_3 \vee K_n = K_{n+3}\), the result is true we know by [5].

Theorem 3.2. If \(m \geq 4\) and \(n \geq 4\), then
\[
\chi'_{vd}(C_m \vee K_n) = m + n.
\]

Proof. By Lemma 2, the inequality \(\chi'_{vd}(C_3 \vee K_n) \geq \mu(C_3 \vee K_n)\) is obvious, so
we only need to prove that $C_3 \lor K_n$ has a mapping $(m+n)$-VDEC only. For convenient, we let that

$$C_m = u_1u_2\ldots u_{m+1},$$
$$V(K_n) = \{v_i \mid i = 1, 2, \ldots, n\};$$
$$C = \{1, 2, \ldots, m + n - 1, 0\},$$
$$\overline{C}(v) = C \setminus C(v),$$
$$u_i = v_{n+i}, \quad i = 1, 2, \ldots, m.$$

Case 1. If $m > n$, we make a coloring function f as:

$$f(v_i v_j) = i + j - 2(\text{mod } m + n),$$

for $i = 1, 2, \ldots, n; \quad j = i + 1, i + 2, \ldots, m + n$ and $f(u_{m+1}) = i, \quad i = 1, 2, \ldots, m - 1; \quad$ and $f(u_{m}u_1) = n - 1.$

Therefore, we can get that

$$\overline{C}(v_i) = \{2(i - 1)\}, \quad \text{for } 1 \leq i \leq n;$$

$$C(u_1) = \{1, n - 1, n, \ldots, 2n - 1\};$$
$$C(u_m) = \{m - 1, m + n - 1, 0, 1, \ldots, n - 1\};$$
$$C(u_i) = \{i - 1, i, n + i - 1, \ldots, 2n + i - 2\} (\text{mod } m + n), \quad \text{for } 2 \leq i \leq m - 1.$$

This proves that f is a $(m+n)$-VDEC of $C_m \lor K_n$.

Case 2. If $m = n$, we make f as:

$$f(v_i v_j) = i + j - 2(\text{mod } 2n), \quad i = 1, 2, \ldots, n; \quad j = i + 1, i + 2, \ldots, 2n$$

and

$$f(u_{m+1}) = i + 1, \quad i = 1, 2, \ldots, n - 1;$$

and $f(u_{m}u_1) = n - 1.$
Then, we still have that
\[C(v_i) = \{2(i-1)\}, \quad i = 1, 2, \ldots, n; \]
\[C(u_i) = \{2, n-1, n, \ldots, 2n-1\}; \]
\[C(u_m) = \{n-1, n, 2n-1, 0, 1, \ldots, n-2\}; \]
\[C(u_i) = \{i, i+1, n+i-1, \ldots, 2n+i-2\} \pmod{2n}, \quad i = 2, 3, \ldots, n-1. \]
That means that \(f \) is a \((2n)\)-VDES of \(C_m \vee K_n \).

Case 3. If \(n > m \), we let \(f \) as:
\[f(v_i,v_j) = i + j - 2 \pmod{m+n}, \quad i = 1, 2, \ldots, n; \quad j = i + 1, i + 2, \ldots, m+n \]
and
\[f(u_iu_{i+1}) = n - m + i, \quad i = 1, 2, \ldots, m-2; \]
and \(f(u_{m-1}u_m) = n \) and \(f(u_mu_1) = n-1. \)

Then, if \(m+n \equiv 0 \pmod{2} \), we can see that
\[\overline{C}(v_i) = \{2(i-1)\}, \quad i = 1, 2, \ldots, \frac{m+n}{2}; \]
\[\overline{C}(v_i) = \{2i - (m+n) - 1\}, \quad i = \frac{m+n}{2} + 1, \frac{m+n}{2} + 2, \ldots, n; \]
\[C(u_1) = \{n - m + 1, n - 1, n, \ldots, n - m - 1\}; \]
\[C(u_{m-1}) = \{n - 2, n, m + n - 2, m + n - 1, 0, 1, \ldots, n - 3\}; \]
\[C(u_m) = \{n - 1, n, m + n - 1, 0, \ldots, n - 2\}; \]
and
\[C(u_i) = \{n - m + i, n - m + i + 1, n + i - 1, \ldots, n - m + i - 2\} \pmod{m+n}, \quad i = 2, 3, \ldots, m-2. \]
If \(m + n \equiv 1 \pmod{2} \), we can compute

\[
\overline{C}(v_i) = \{2(i - 1)\}, \quad i = 1, 2, \ldots, \frac{m + n + 1}{2};
\]

\[
\overline{C}(v_i) = \{2i - m - n\}, \quad i = \frac{m + n + 1}{2} + 1, \frac{m + n + 1}{2} + 2, \ldots, n;
\]

\[C(u_1) = \{n - 1, n - m + 1, n, n + 1, \ldots, n - m - 1\};\]
\[C(u_{m-n}) = \{n - 2, n, m + n - 2, m + n - 1, 0, 1, \ldots, n - 3\};\]
\[C(u_{m}) = \{n - 1, n, m + n - 1, 0, \ldots, n - 2\};\]
\[C(u_i) = \{n - m + i - 1, n - m + i, n + i - 1, \ldots, n - m + i - 2\}(\mod{n + m}), \quad i = 2, 3, \ldots, m - 2.\]

We have proved that \(f \) is a \((m + n)\)-VDEC of \(C_m \vee K_n \).

The proof is completed.

References

